Reading PAGE

Peer Evaluation activity

Downloads 38235
Views 200
Following... 21

Total impact ?

    Send a

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Mahendra Kumar Trivedi

    Independent researcher

    Las Vegas Naveda
    Trivedi Global Inc.
    Trivedi Science Research Laboratory Pvt. Ltd

    Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam

    Export to Mendeley

    Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain andinflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral propertiesof paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. Thecontrol groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectralproperties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopictechniques. FT-IR data of paracetamol showed N-H amide II bending peak in biofield treated paracetamol, which wasshifted to lower wavenumber (1565 to 1555 cm-1) as compared to control. Further, the intensity of vibrational peaks inthe range of 1171-965 cm-1 (C-O and C-N stretching) were increased in treated sample of paracetamol as comparedto control. Similarly, the FT-IR data of piroxicam (treated) showed increased intensity of vibrational peaks at 1628(amide C=O stretching), 1576-1560 cm-1 (C=C stretching) with respect to control peaks. Furthermore, vibrationalpeak of C=N stretching (1467 cm-1) was observed in biofield treated piroxicam. This peak was not observed in controlsample, possibly due to its low intensity. Based on FT-IR data, it is speculated that bond length and dipole moment ofsome bonds like N-H (amide), C-O, and C-N in paracetamol and C=O (amide), C=N, and C=C in piroxicam might bechanged due to biofield treatment. The UV spectrum of biofield treated paracetamol showed the shifting in wavelengthof UV absorption as 243→248.2 nm and 200→203.4 nm as compared to control. Likely, the lambda max (λmax) oftreated piroxicam was also shifted as 328 →345.6 nm, 241→252.2 nm, and 205.2→203.2 nm as compared to control.Overall results showed an impact of biofield treatment on the spectral properties of paracetamol and piroxicam.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam
    Author(s) : Mahendra Kumar Trivedi
    Abstract : Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain andinflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral propertiesof paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. Thecontrol groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectralproperties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopictechniques. FT-IR data of paracetamol showed N-H amide II bending peak in biofield treated paracetamol, which wasshifted to lower wavenumber (1565 to 1555 cm-1) as compared to control. Further, the intensity of vibrational peaks inthe range of 1171-965 cm-1 (C-O and C-N stretching) were increased in treated sample of paracetamol as comparedto control. Similarly, the FT-IR data of piroxicam (treated) showed increased intensity of vibrational peaks at 1628(amide C=O stretching), 1576-1560 cm-1 (C=C stretching) with respect to control peaks. Furthermore, vibrationalpeak of C=N stretching (1467 cm-1) was observed in biofield treated piroxicam. This peak was not observed in controlsample, possibly due to its low intensity. Based on FT-IR data, it is speculated that bond length and dipole moment ofsome bonds like N-H (amide), C-O, and C-N in paracetamol and C=O (amide), C=N, and C=C in piroxicam might bechanged due to biofield treatment. The UV spectrum of biofield treated paracetamol showed the shifting in wavelengthof UV absorption as 243→248.2 nm and 200→203.4 nm as compared to control. Likely, the lambda max (λmax) oftreated piroxicam was also shifted as 328 →345.6 nm, 241→252.2 nm, and 205.2→203.2 nm as compared to control.Overall results showed an impact of biofield treatment on the spectral properties of paracetamol and piroxicam.
    Keywords : biofield,trivedi effect,the trivedi effect,mahendra trivedi, mahendra kumar trivedi

    Subject : pharmaceuticals
    Area : Open Access
    Language : English
    Year : 2015

    Affiliations Trivedi Global Inc.
    Trivedi Science Research Laboratory Pvt. Ltd
    Journal : Chemical Sciences Journal
    Volume : 6
    Issue : 3
    Publisher : Open Access
    Doi : 10.4172/2150-3494.100098

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Mahendra's Peer Evaluation activity

    Downloads 38235
    Views 200
    Following... 21
    • Alejandro Engelmann, Independent researcher, Library, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    • Selma Dorrestein, Student, Master Level, University of Amsterdam.
    • Francisco Herrera, Publisher, UNIVERSITY OF GRANADA.
    • Ralf Steinmetz, Professor, university.
    • Gregory Dudek, Professor, McGill University, School of Computer Science, Montreal, Canada.
    • Umberto Straccia, Senior Research Fellow, ISTI - CNR.
    • Sorin Cotofana, Associate Professor, Deft University of Technology, Faculty of Electrical Engineeting, Mathematics, and Computer Science. Computer Engineering, Delft, The Netherlands.
    • Stefan Trausan-Matu, Professor, Computer Science Department, Politehnica University of Bucharest, Research Institute for Artificial Intelligence.
    • Jean Quisquater, Professor, UCL Crypto Group.
    • Markus Jakobsson, Principal Research Fellow, PayPal, FatSkunk, Indiana University.
    • Michael Elad, Professor, Technion - Israel institute of Technology.
    • Andrew Lumsdaine, Professor, Indiana University.
    • Mikael Nilsson, Student, Ph.D. Level, Royal Institute of Technology, Stockholm, Sweden.
    • Emilie Combet, Lecturer, MVLS, University of Glasgow, Glasgow, Centre for Population and Health Sciences, Life-course Nutrition and Health.
    • Werner Muller, Professor, Faculty of Life Science, University of Manchester, Manchester.
    • Syam Mohan, Senior Research Fellow, Pharmacology, University of Malaya, Malaysia.
    • Ramy K Aziz, Lecturer, Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
    • Paweł K. Jędrzejko, Associate Professor, Department of American and Canadian Studies of the Institute of English Cultures and Literatures, University of Silesia in Katowice, Poland.
    • Nader Ale Ebrahim, Independent researcher, Research Support Unit, Centre of Research Services, Institute of Research Management and Monitoring (IPPP), University of Malaya, Malaysia.
    • Kelli Barr, Student, Ph.D. Level, Department of Philosophy and Religion Studies, University of North Texas, Denton, TX.
    • Pandelis Perakakis, Post Doctorate, Economics department, Universitet Jaume I, Castellon.

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.